
Résistance Des Matériaux
Dossier 5 – Cas particulier de la flexion pure

Ce document est une synthèse du cours présenté



Mise en oeuvre

Torseur de cohésion

Déplacements et déformations
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On utilise la méthode des grilles, on observe que la
poutre prend la forme d’un arc de cercle.
Les sections droites restent droites et elles restent
planent.

Moments quadratiques usuels

IGz = 𝜋.
𝐷ସ  − 𝑑ସ
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IGz =
𝑏. ℎଷ 
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Moment quadratique dans le
cas d’un tube [m4]

Moment quadratique dans le
cas d’une section rectangulaire
[m4]
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En flexion pure, il n’y a qu’une contrainte normale, toutes les
fibres de la poutre sont dans un état de traction ou
compression simple, les autres contraintes sont nulles.
Donc le critère « matériau ductile » peut consister à
dimensionner à la contrainte normale…

Critère de résistance

𝜎maximum 𝜎admissible

Avec 𝜎admissible  0,8 Re
Re résistance élastique
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𝑥ଶ𝐺𝑠 + 𝑦ଶ𝐺𝑠 = 𝑅²

D’une part si xGs << R   alors                                  𝑦′′𝐺𝑠
ିଵ

ோ
.

Igz = moment quadratique de la
section relativement à l’axe Gs𝑧
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𝑦𝐺𝑠 =  (𝑅ଶ − 𝑥ଶ𝐺𝑠)ଵ/ଶ

𝑦′𝐺𝑠 =  
−2. 𝑥𝐺𝑠
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. (𝑅ଶ − 𝑥ଶ𝐺𝑠)ିଵ/ଶ

𝑦′′𝐺𝑠 =  −(𝑅ଶ − 𝑥ଶ𝐺𝑠)ିଵ/ଶ − 𝑥ଶ𝐺𝑠. (𝑅ଶ − 𝑥ଶ𝐺𝑠)ିଷ/ଶ

D’autre part     𝑅. 𝑑𝜔 ≈ 𝑑𝑥   𝑠𝑜𝑖𝑡                              
ௗఠ

ௗ௫
=  

ଵ

ோ
donc constant pour une flèche donnée

Le long de la ligne moyenne :

Dans une section : 

.dx = d.y(M)

Ordonnée de M dans la 
section relativement à Gs.

d/dx = /y(M)

Vecteur contrainte

𝑀(
𝑆 +

𝑠 −
) = −𝑀𝑓. 𝑧 =  ඵ 𝑇(𝑀, 𝑥⃗)

 

 

∧ 𝑀𝐺𝑠. 𝑑𝑠 = ඵ 𝑇 𝑀, 𝑥⃗

 

 

∧ 𝑦𝑀. 𝑦⃗. 𝑑𝑠

Donc obligatoirement si le résultat du produit vectoriel est sur 𝐺𝑠𝑧,    𝑇(𝑀, 𝑥⃗) = 𝜎. 𝑥⃗

En projection :       −𝑀𝑓𝑧 = ∬ 𝜎. 𝑦𝑀. 𝑑𝑠
 

 

Lois de comportement

𝜎 = E.𝜀  𝑙𝑜𝑖 𝑑𝑒 𝐻𝑂𝑂𝐾𝐸

Soit 𝜎 = E.ௗఠ

ௗ௫
.yM = E.௒ெ

ோ

La contrainte normale est proportionnelle à l’ordonnée de M dans la section.

Une partie de la poutre est donc comprimée (  < 0)  et une partie est tendue (  > 0) .

La ligne moyenne n’est ni comprimée ni tendue, on l’appelle FIBRE NEUTRE.
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𝜎 =  E.௒ெ

ோ σ =  ିெ௙௭
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𝑀𝑓𝑧 = 𝐸. 𝐼𝐺𝑧. 𝑦𝐺𝑠′′𝑦′′𝐺𝑠
ିଵ

ோ
.

𝑀𝑓𝑧 = 𝐸. 𝐼𝐺𝑧. 𝑦ᇱᇱ       𝑆𝑜𝑖𝑡    𝑦ᇱ =  
ଵ

ா.ூீ௭
. Mfz .x + K1    et donc 

constant

𝑦 =  
ଵ

ா.ூீ௭
. Mfz .x²/2 + K1.x + K2

x
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Mfz

La flèche correspond au déplacement maximum. Ici c’est en xGs = L                      f = yGs(L) = ଵ

ா.ூீ௭
. Mfz .L²/2 

2 constantes à trouver  2 conditions à écrire.

YGs(x=0) = 0

Y’Gs(x=0) = 0

K2 = 0

K1 = 0
donc

ௗఠ

ௗ௫
= ఙ

ா.௬ெ
= ெ௙௭

ா.ூ௚௭
𝜔 𝐿 − 𝜔 𝑜 =  

𝑀𝑓𝑧. 𝐿
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