
Vibrations mécaniques - partie A2 
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Systèmes à N degrés de libertés

Etude a : table vibrante

Moteur à excentrique

Table vibrante
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On considère une table vibrante unidirectionnelle utilisée en laboratoire de recherche
pour éprouver dynamiquement les piles à combustibles.
Elle est formée d’un solide indéformable de masse M dont le seul mouvement possible est
une translation suivant l’axe Ox et de poutres identiques, de section droite constante
d’aire S, de longueur L et usinées dans un matériau homogène de masse volumique r et
de module d’Young E. Les poutres sont encastrées dans une semelle indéformable
reposant sur le sol.
La table reçoit deux moteurs à excentriques qui tournent à la même vitesse  mais en
sens opposés.



Etude a : système à 3 DDL
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Etude des vibrations longitudinales 
des poutres support.

 Discrétisation d’un système continu,
 Recherche des fréquences naturelles.

0,17

0,5

0,83

Plus court donc plus raide.

Etude a : système à 3 DDL
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Déterminer les 3 équations différentielles qui 
décrivent les oscillations de ce système à 3 DDL.



Etude a : système à 3 DDL
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Déterminer les 3 fréquences naturelles de ce 
système.
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https://calculis.net/resoudre-equation-troisieme-degre

Etude a : système à 3 DDL

Les modes de vibrations transversales d’une poutre encastrée-libre
permettent de deviner l’allure des modes longitudinaux.

Mode 1 Mode 2 Mode 3Modes

TRANSVERSALEMENT LONGITUDINALEMENT



Etude a : système à 3 DDL
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Pour les deux premiers modes propres on choisit
comme vecteurs propres :

A1(1,2,3)
t

A2(1,3,0)
t

Etude a : système à 3 DDL
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Calculer les matrices des masses et des raideurs
réduites.



Etude a : système à 3 DDL
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En déduire les deux premières pulsations propres
approchées et les comparer aux valeurs réelles ci-
dessous :

𝜔1𝑟 =  0,52
௞

௠

 
    𝜔2𝑟 = 1,41

௞
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     𝜔3 = 1,93

௞
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Determine the 3 differential equations which 
describe the oscillations of this system with 3 DOF. 

Etude a : système à 3 DDL
real natural frequencies : 

-2k.U1 + k(U2-U1) = m.U1’’.

-k(U3-U2) = m.U3’’.

-k(U2-U1) +k(U3-U2) = m.U2’’ 

m.U1’’ +3KU1 – kU2 = 0 

m.U2’’ –kU1 + 2KU2 – kU3 = 0 

m.U3’’ – KU2 + kU3 = 0 

𝑀ന = 𝑚
1 0 0
0 1 0
0 0 1

𝐾ന = 𝐾
3 −1 0

−1 2 −1
0 −1 1

𝐾 − 𝜔𝑖 ². 𝑀  . 𝑈 = 0

Action reaction

Action reaction



Etude a : système à 3 DDL
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Determine the 3 real natural frequencies of this 
system.
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https://calculis.net/resoudre-equation-troisieme-degre

Tℎ𝑒𝑛    𝐾 − 𝜔𝑖 ². 𝑀 = 0 …

(3- ²)*[(2- ²).(1- ²) – 1] - - 1*[-1.(1- ²)+ 1.0] = 0

(3- ²)*[ସ-3 ²+1] -[(1- ²] = 0

[−଺ + 6 ସ  − 9 ² + 2] = 0

1² = 0,26.
௄

௠

2² = 2 
௄

௠

3² = 3,73 
௄

௠

1 = 0,50
௄

௠

 

2 = 1,41
௄

௠

 

3 = 1,93 
௄

௠

 

2nd line
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Calculate the matrices of the reduced masses and
stiffnesses.

Etude a : système à 3 DDL

𝐴̿ =  
1 1
4 2
6 −3

𝑀ന∗  = 𝑚.
1 4 6
1 2 −3

1 0 0
0 1 0
0 0 1

1 1
4 2
6 −3

=m. 53 −9
−9 14

𝐾ന∗  = 𝑘.
1 4 6
1 2 −3

3 −1 0
−1 2 −1
0 −1 1

1 1
4 2
6 −3

=k 15 −5
−5 28
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Deduce the first two approximate eigenfrequencies
and compare them with the real values below:

𝜔1𝑟 =  0,50
௞

௠

 
    𝜔2𝑟 = 1,41

௞

௠

 

Etude a : système à 3 DDL

𝐾 ∗− 𝜔𝑖 ². 𝑀 ∗ = 0

15 − 53𝜔𝑖² −5 + 9𝜔𝑖²
−5 + 9𝜔𝑖² 28 − 14𝜔𝑖²

=0 Don’t forget k and m !

661iସ − 1604𝜔𝑖²+395 = 0
ω1ଶr = 0,27

୩

୫
        ω2²r = 2,15

୩

୫

The first two approximate eigenfrequencies are :

ω1r =  0,52
୩

୫

 
    ω2r = 1,47

୩

୫

 
very accurate !

Etude b : système à  N  DDL

Pour N > 3, la recherche de ωi pose problème, 
de plus seules les basses fréquences sont utiles.

On cherche à abaisser la taille du système      
via l’approximation de RAYLEIGH RITZ… 
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N systèmes masse-ressort (structures réelles,  0 )

N équations d’équilibre
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Etude b : système à  N  DDL
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Classiquement n = 2 ou 3

A partir d’hypothèses raisonnables sur les aij,
issues de considérations sur la déformée statique et les modes, on pose :

)(  . )( tPAtU




Ordre [N,1] [N,n] [n,1]

avec n << N
U1(t) = a11.p1(t) + a12p2(t) + …a1npn(t)n est le nombre de fréquence propres cherchées

On utilise comme base les n premiers vecteurs propres

Globalement :

Matrices de passage dans la base 
des n premiers vecteurs propres

Approximation de RAYLEIGH RITZ

Etude b : système à  N  DDL

On réduit le système de N équations en Ui(t) à un système à n équations en  pi(t), 
plus petit,  dont on recherchera n racines ω1 à ωn, tel que n << N.
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es [n,n] symétriqumatrices  K   et    M
**

Matrices réduites
car passées dans la base propre

Les matrices changent de base, passage à la base modale !

Engendre une erreur dite erreur de troncature.

Vers un système réduit…



Etude b : système à  N  DDL
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déformée 
statique

choix arbitraire intuitif
éventuellement grossier inspiré 

des premiers modes propres

a1 ai an

Influence 
l’erreur finale

Choix de la matrice de passage

Etude b : système à  N  DDL
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Si ai est vecteur propre alors la racine R(ai) 
correspond à la pulsation propre ωi².

Si on choisit ai proche du vecteur propre 
alors R(ai) correspond pourtant presque à ωi²,

de par la forme de la fonction...

Pourquoi cela marche-t-il ?



En déduire les deux premières pulsations propres approchées…

Pour les deux premiers modes propres 
on choisit comme vecteurs propres :

A l’aide d’un croquis représentant les vibrations transversales
d’une poutre bi-encastrée, justifier ce choix.

Mechanical Vibrations - part 1 


