Vibrations mécaniques - partie A2 .

Systemes a N degrés de libertés

Etude a : table vibrante

sLp SLp1s

Moteur a excentrique

Table vibrante

On considere une table vibrante unidirectionnelle utilisée en laboratoire de recherche
pour éprouver dynamiquement les piles a combustibles.

Elle est formée d’un solide indéformable de masse M dont le seul mouvement possible est
une translation suivant l'axe Ox et de poutres identiques, de section droite constante
d’aire S, de longueur L et usinées dans un matériau homogene de masse volumique p et
de module d’Young E. Les poutres sont encastrées dans une semelle indéformable
reposant sur le sol.

La table regoit deux moteurs a excentriques qui tournent a la méme vitesse (2 mais en
sens opposés.




Etude a : systeme a 3 DDL .
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Plus court donc plus raide.

Etude des vibrations longitudinales
des poutres support.

-> Discrétisation d’un systéeme continu,
- Recherche des fréquences naturelles.

Etude a : systeme a 3 DDL .

Déterminer les 3 équations différentielles qui
décrivent les oscillations de ce systéme a 3 DDL.




Etude a : systeme a 3 DDL

4 N
Déterminer les 3 fréquences naturelles de ce
systeme.
3-0? -1 0
1 220 -1 | =0
0 -1 1- »?
\_ https://calculis.net/resoudre-equation-troisieme-degre Y,

Etude a : systeme a 3 DDL

TRANSVERSALEMENT LONGITUDINALEMENT

Modes Mode 1 Mode 2 Mode 3

- |

Les modes de vibrations transversales d’une poutre encastrée-libre
permettent de deviner I'allure des modes longitudinaux.




Etude a : systeme a 3 DDL .

Pour les deux premiers modes propres on choisit
comme vecteurs propres :

_ .t _ .t
Al(1,2,3) A2(1,3,0)

wose>

Mode 2

[

Etude a : systeme a 3 DDL

Calculer les matrices des masses et des raideurs
réduites.




Etude a : systeme a 3 DDL .

En déduire les deux premiéres pulsations propres
approchées et les comparer aux valeurs réelles ci-
dessous :

wlr = 0,52\/E w2r = 1,41\/Z w3 = 1,93\/E
m m m

Etude a : systeme a 3 DDL

Determine the 3 differential equations which
describe the oscillations of this system with 3 DOF.

2k.U1 + k(U2-Ul) =m.U1".
Action reaction
k(U2-U1) +k(U3-U2) = m.U2”
Action reaction

k(U3-U2) = m.U3”.

_ 100
M=m<0 1 o)

0 0 1

m.U1” +3KU1 -kU2 =0

m.U2” kU1 + 2KU2 — kU3 =0 (K- wi2M).U=0

_ 3 -1 0
m.U3” - KU2 + kU3 =0 K=k <—1 2 —1)
0 -1 1




Etude a : systeme a 3 DDL

[0+ 6 0* —9w*+2]=0

Then |E — wi 2.M| =0..

Determine the 3 real natural frequencies of this

system.
=0
2" Jine
K
_ K 1=0,50 |—
(G- )*[(2- 0).(1- @) — 111 - F[-1.(1- )+ 1.0] =0  @1*=0.26. e \/;
K
@3- (,02)*[(04'-3 1] -[(1- *] =0 022=2 o 02 = 1,41\/%
K

032=373% ®3=1,93
m m

https://calculis.net/resoudre-equation-troisieme-degre
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Etude a : systeme a 3 DDL .

Calculate the matrices of the reduced masses and
stiffnesses.

wem( 4 50 1 o)1 2 ) 1)

0 0 1/\6 -3

A e (R R e

-1 1 6 -3




Etude a : systeme a 3 DDL

Deduce the first two approximate eigenfrequencies
and compare them with the real values below:

wlr = 0,50\/E w2r = 1,41\/Z
m m

|K+— wi2M*| =0

15 — 53wi? =5+ 9wi?
—54+9wi* 28— 14wi?
661wi* — 1604wi%+395=0

0l7r=027=  w2r=215=
The first two approximate eigenfrequencies are :

wlr = 0,52\/E w2r = 1,47J£ very accurate !
m m

=(  Don’t forgetkand m!

Etude b : systemea N DDL .

N systemes masse-ressort (structures réelies, & = 0 )

N équations d’équilibre K et M matrices
d'ordre N'!
a2 7\ i
(E a)l.M).U_O S<ieN
d'ou

(déterminant systeme

? — w2 ]\7 =0 nul pour éviter
: solution nulle)

N racines wi? a trouver !1!

Pour N > 3, la recherche de wi pose probleme,
de plus seules les basses fréquences sont utiles.
mm) On cherche a abaisser la taille du systeme

via l'approximation de RAYLEIGH RITZ...




Etude b : systemea N DDL .

Approximation de RAYLEIGH RITZ

A partir d’hypothéses raisonnables sur les aij,
issues de considérations sur la déformée statique et les modes, on pose :
n est le nombre de fréquence propres cherchées

On utilise comme base les n premiers vecteurs propres Ul (t) - a“'pl(t) + alzpz(t) T al“pn(t)
avecn<< N

Globalement : Ul(t) all

ail ... anl pl()
vir) |=| ali .. aii .. ani || Pi(t)
UN()) \alN .. aiN .. anN )\ pn(?)

Matrices de passage dans la base
des n premiers vecteurs propres

Ordre [N, 1] —— [N,n] ——— [n,1]
) U ()= A. ﬁ(t) Classiquement n =2 ou 3

Etude b : systemea N DDL .

]\7(7( ) +?.U( £ = 0 Vers un systéme réduit...

& MAP(t)+ K AP(1)=0

Les matrices changent de base, passage a la base modale !

=% =t =—=

oM .ﬁ(t)+? P(t)=0 avec {M =AM.A Matrices réduites

— —

car passées dans la base propre
K =4 KA P prop

J—

E El

M et K matrices symétriques [n,n]

On réduit le systéeme de N équations en Ui(t) a un systéme a n équations en pi(t),
QJS petit, dont on recherchera n racines w1 a wn, tel que n << N.

Engendre une erreur dite erreur de troncature.




Etude b : systemea N DDL .

Choix de la matrice de passage

— —
al ai an
Ul(t) all .. ail .. anl)\(pl(s)
U2(¢) al2
Uiy |=| ali .. aii .. ani || Pi)
UN®)) \alN .. aiN .. anN J\ pn(?)

I

déformée évenZ?ecjll)e(njgl)vl;ra;;esggl%s iré Influence
statique g P l'erreur finale

des premiers modes propres

Etude b : systemea N DDL .

Pourquoi cela marche-t-il ? R T

> . >
Si al est vecteur propre alors la racine R(ai)
correspond a la pulsation propre wi?.

»
Si on choisit ai proche du vecteur propre
alors R(ai) correspond pourtant presque a wi?,
de par la forme de la fonction...




Mechanical Vibrations - part 1

Pour les deux premiers modes propres . (] [
. . al=
on choisit comme vecteurs propres :

A l'aide d’un croquis représentant les vibrations transversales
d’une poutre bi-encastrée, justifier ce choix.

En déduire les deux premiéres pulsations propres approchées...




